NTNU MARINE CIVIL ENGINEERING DEPARTMENT

HIGH EFFICIENCY AND FULLY NONLINEAR OFFSHORE WIND TURBINE MODELING

REEF3D OPEN-SOURCE HYDRODYNAMICS

IMAGE SOURCE: COMMERCIAL ALLIANZ. OPPORTUNITIES AND RISKS IN OFFSHORE WIND

Motivation

WE EXPECT EUROPE TO **INSTALL 260 GW OF NEW** WIND POWER CAPACITY OVER 2024-2030.

WIND EUROPE

FIGURE B. 2024-30 annual onshore and offshore wind power installations in the EU - WindEurope's Outlook

Source: WindEurope

Motivation OFFSHORE WIND PROJECTS OPERATE IN SOME OF THE MOST CHALLENGING AND UNPREDICTABLE **ENVIRONMENTS ON THE** PLANET.

MARINE SAFETY CONSULTANTS INC

One of Europe's largest producers and retailers of electricity and heat and market leader in wind Energy

Offshore wind portfolio:

- In operation 4.1 GW
- 13.3 GW **Under development** \rightarrow

"We want to enable the fossil freedom that drives society forward."

KRIEGERS FLAK

KRIEGERS FLAK WIND FARM

Hydrodynamics framework that offers open-source CFD and wave models.

Modular programming approach:

- CFD
- NHFLOW
- SFLOW
- FNPF

Three-dimensional fully nonlinear potential flow solver.

Massively parallelized and can be used to create large-scale phase-resolved sea states at all water depths.

Goal

ANALOGY WITH THE ARBITRARY LAGRANGIAN FORCE CALCULATION

Velocity potential calculated on a σ-grid (REEF3D FNPF)

ALE system

Morison equation

 $F_x = \rho(h + \eta)$

 $\left[\int_{0}^{1} C_{M} a_{x} A_{xy} d\sigma + \int_{0}^{1} C_{D} u |u| \frac{1}{2} B_{p} d\sigma\right]$

SOURCE: WANG ET AL. 2022. EQ. 25

Study case near Flatøya

Free surface elevation

Wave forces in x and y direction

Goal

Study case near Flatøya at the coast of Norway

ARTICLE SOURCE: WANG ET AL. 2022. High-efficiency wind-farm-scale wave force estimation for preliminary design of offshore wind installations

IMPACTS

HIGH EFFICIENCY

HYDRODYNAMIC SIMULATIONS AND FORCE CALCULATIONS ARE INTEGRATED AND PERFORMED AT RUN TIME.

ENCY AND FORCE ND PERFORMED

IMPACTS

LARGE-SCALE CALCULATIONS **RUN-UP CALCULATION FOR MULTIPLE TURBINES IN ONE SINGLE SIMULATION**

RUN-UP CALCULATION

McCamy and Fuchs (1954) - Linear Diffraction Theory

Other formulas for different conditions:

Lykke	$u_{2^{9/2}}$ for $(4 = z_{0,p} = 0.02)$
Andersen and	$R_{u,2\%} = \eta_{\max,2\%} + m \frac{1}{2g}$ for $m = \begin{cases} 3 & s_{0p} = 0.035 \end{cases}$
Frigaard	
(2006)	
Lykke	$u_{2\%}^{2}$ (5.6 $z_{0,p}=0.02$
Andersen et al.	$R_{u,2\%} = \eta_{\max,2\%} + m \frac{1}{2g}$ for $m = \begin{cases} 4.2 & s_{0p} = 0.035 \end{cases}$
(2011)	
Peng et al.	$R_{u,2\%} = 7.39 \times \ln(0.27U_{tr} + 1)$ for $x = 0.004 \ln(251.8^{H} + 1)$
(2012)	$\frac{1}{h} = 7.59\gamma_{\rm D} \mathrm{m} \left(0.2707 + 1\right) \mathrm{Ior} \gamma_{\rm D} = 0.004 \mathrm{m} \left(251.8 \frac{1}{D} + 1\right)$
Ramirez et al. (2013)	$R_{u,2\%} = \eta_{\max,2\%} + m \frac{u_{2\%}^{2}}{2g} \text{ for classified wave run-up levels A, B and C}$ Level A: $m = \begin{cases} -66.667 z_{0p} + 5.33 & z_{0p} < 0.035 \\ 3 & z_{0p} > 0.035 \end{cases}$ Level B: $m = \begin{cases} -93.33 z_{0p} + 7.47 & z_{0p} < 0.035 \\ 4.2 & z_{0p} > 0.035 \end{cases}$
	Level C: $m = \begin{cases} -200 s_{0p} + 16 & s_{0p} < 0.035 \\ 9 & s_{0p} > 0.035 \end{cases}$
Kazeminezhad and Etemad- Shahidi (2015)	$\frac{R_{u,2\%}}{H_{m0}} = 1.4 \left(\frac{H_{m0}}{h}\right)^{0.15} \left(\frac{H_{m0}}{L_{0p}}\right)^{-0.055} \text{ for } \frac{H_{m0}}{h} \le 0.36$
	$\left \frac{R_{u,2\%}}{H_{m0}} = 1.2 \left(\frac{H_{m0}}{L_{0p}} \right)^{-0.055} + 8.5 \times 10^{-4} \left(\frac{H_{m0}}{h} - 0.36 \right)^{0.15} \left(\frac{H_{m0}}{L_{0p}} \right)^{-1.5} \text{ for } \frac{H_{m0}}{h}$

ARTICLE SOURCE: BONAKDAR ET AL. 2016. Run-up on vertical piles due to regular waves: Small-scale model tests and prediction formulae

 $\frac{R_u}{\eta_{\text{max}}} = \left(1 + \left(2ka\right)^2\right)^{-0.5}$

SOURCE: BONAKDAR ET AL. 2016. EQ. 3

 $\frac{10}{10} > 0.36$

SOURCE: BONAKDAR ET AL. 2016. TABLE 1

VALIDATION

EXPERIMENTAL DATA

VALIDATION AGAINST **EXPERIMENTAL DATA IN** COLLABORATION WITH VATENFALL

VALIDATION USING CFD MODULE IN REEF3D AND AN HYDRODYNAMIC COUPLING WITH THE MODULE FNPF

CFD SIMULATION

SUMMARY

MOTIVATION

The growing importance of offshore wind and the challenging conditions where they are developed.

GOAL

Include run-up calculations in REEF3D:FNPF to achieve fast large-scale calculations waves runup on OWT foundations.

VALIDATION

Use experimental data from collaborator and CFD simulations to validate the results.