Ice actions in harbours and coastal infrastructure

Knut V. Høyland, IBM

Ice in Norwegian waters

- Often light ice conditions
 - Thin ice
 - Limited occurrence
 - Difficult to predict
- Limited driving forces
 - Small ice area in fjords and in harbours
- Which scenario should we design for?

Ice crushes (limit stress) or not?

$$F_{crush} \approx h_i \cdot w \cdot F > F_{wind-driving} \approx \rho_a \cdot C_d \cdot A_i \cdot u_a^2$$

- Ice thickness h_i =0.5 m
- Structure width w=10 m
- F ice factor (different in N400, ISO19906, CSA, ...)
 = 1MPa
- Air density 1,3 kg/m³
- Air-ice drag coefficient C_d =0.002
 - Ice area A_i
 - Wind velocity $u_q = 20 \text{ m/s}$

$$A_i < \frac{F}{\rho_a C_d u_a^2} h_i w \approx 5 \text{km}^2$$

Scenarios

- Need to estimate the probability for different scenarios
- Ice crushes against structure gives highest load (F_{crush} limit stress)
- Ice action limited by wind and ice area ($F_{wind driving}$ limit driving forces)
- Thermal expansion of ice
- Vertical loads ice accumulation etc.
- Evaluate probability for different scenarios bridge design (sloping foundation, submerged foundation, ...)

Parameters and variables

- Main input variables:
 - Air temperature, T_a
 - Wind velocity (speed + direction), *v_a*
 - Ice area fecth for wind and current, A_i
 - Snow precipitation, *h*_s
 - Water depth and tides, h_w
- Structural parameters
 - Width and shape in water line
 - Dynamic characteristics
- Parameters
 - Air-ice and water-ice drag, C_a and C_w ->field data for validation of surface roughness
 - Air and water densities, ρ_w and ρ_w
 - *F* (ice strength , σ_i , C_R)->field data for validation?
- Calculated variables:
 - Ice thickness, *h_i* ->field data for validation
 - Driving forces from wind (and current), F_d ->full-scale data for validation
 - Crushing forces (limit stress for example ISO19906), F_c ->full-scale data for validation

Flow scheme for ice action on structures with limited driving forces

Ice thickness – vital parameter

- Simple formulas exist- two vital uncertainties
 - When does the ice form?
 - How much snow?
 - Thin ice more difficult to predict
- Local knowledge important Ocean is vital!
- Ice forms
 - Locally
 - Elsewhere and drift into harbour

Ice action from thermal expansion of the ice 1

- Most important for air temperature increase without much snow cover.
- What is the 50-year ΔT_a and corresponding ice thickness for cases with no, or little snow?
- Expand in all directions
- Time-scales
 - Temperature penetration has one time-scale given by heat transfer
 - Mechanical response through combined elastic-visco-elastic and creep has another time-scale
 - The combination of these give the response of the ice cover.

Ice action from thermal expansion of the ice 2

- Ice salinity
 - Saline sea ice has a smaller thermal expansion coefficient than freshwater ice. It may even be negative, but this is not clear.
 - Ice often quite fresh (from river outlet)
- Snow cover
 - How does the snow cover give the ice surface temperature
 - Submerged ice
 - Not submerged ice
- Boundary conditions
 - Vertical water level variations
 - Amplitude in relation to ice thickness
 - Frequency in relation to the time-scale
 - Friction on the beach/coastline makes the thermal load worse in the longest direction.

Coastal ice observations

• Friction ice-land can be important

Conclusions – Ice actions in Norwegian harbours

- Light and in-frequent ice conditions
- Limited driving forces
- Two main question
 - What is the probability of ice occurrence?
 - Can ice crush?
- Other mechanisms
 - Give lower ice load
 - More complicated to estimate