Rapid nonlinear numerical modelling and force calculation, digitalisation skills in education at NTNU

Weizhi Wang Researcher Department of Civil and Environmental Engineering Research group Marine Civil Engineering NTNU

Need for speed

- Industry needs fast solutions
- Students needs fast toolbox
- Training of digital skills
- More efficiency and less hardware-dependency

REEF3D : Multi-scale extension

 u_x -0.204 -0.089 0.027 0.142 0.258

REEF3D::NSEWAVE

4.0

3.0

2.0

= 1.0 = 0.0 Ê

-1.0

-2.0

-3.0

-4.0

REEF3D::FNPF

REEF3D::SFLOW

Governing Equations: REEF3D::CFD

Incompressible RANS Equations:

$$\frac{\partial U_i}{\partial x_i} = 0$$

$$\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\left(\nu + \nu_t \right) \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \right] + g_i$$

- Temporal Discretisation: 3rd-order TVD Runge Kutta
- Spatial Discretisation: 5th-order WENO
- Pressure Solution: Projection Method, PPE: PFMG HYPRE

Governing Equations: REEF3D::FNPF

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$

$$\frac{\partial \eta}{\partial t} = -\frac{\partial \eta}{\partial x} \frac{\partial \widetilde{\phi}}{\partial x} - \frac{\partial \eta}{\partial y} \frac{\partial \widetilde{\phi}}{\partial y} + \widetilde{w} \left(1 + \left(\frac{\partial \eta}{\partial x}\right)^2 + \left(\frac{\partial \eta}{\partial y}\right)^2 \right), \ z = \eta$$

$$\frac{\partial \widetilde{\phi}}{\partial t} = -\frac{1}{2} \left(\left(\frac{\partial \widetilde{\phi}}{\partial x}\right)^2 + \left(\frac{\partial \widetilde{\phi}}{\partial y}\right)^2 - \widetilde{w}^2 \left(1 + \left(\frac{\partial \eta}{\partial x}\right)^2 + \left(\frac{\partial \eta}{\partial y}\right)^2 \right) \right) - g\eta, \ z = \eta$$

$$\frac{\partial \phi}{\partial z} + \frac{\partial h}{\partial x} \frac{\partial \phi}{\partial x} + \frac{\partial h}{\partial y} \frac{\partial \phi}{\partial y} = 0, \ z = -h$$

Grid arrangement - sigma-coordinate

Numerical setup

H=1.30 m T=4.0 s d=3.80 m *m* =1:10 m

Kamath et al. (2016) Ocean Engineering Choi et al. (2015) Ocean Engineering

2D CFD wave tank

50 s of simulation in 1 hr on 128 procs, 130k cells eq. 16 h on 8 proc laptop

2D FNPF wave tank

100 s of simulation in 294 s on 8 procs laptop, 41760 cells

380 times faster

2D FNPF-2D CFD HDC wave tank

100 s of simulation in 294 s on 8 procs laptop

CFD HDC: 50 s of simulation in 30 mins s on 128 procs eq. 8 hr on 8 procs laptop

2D FNPF-3D CFD HDC wave tank

ALE approach

Pákozdi, C., Kamath, A., Wang, W., & Bihs, H. (2022). Application of Arbitrary Lagrangian–Eulerian strips with fully nonlinear wave kinematics for force estimation. *Marine Structures*, *83*, 103190.

ALE approach

 $F_x = \rho \left(h + \eta \left(x, t \right) \right) \left[\int_0^1 C_M a_x A_{xy} d\sigma + \int_0^1 C_D u |u| \frac{1}{2} B_p d\sigma \right]$

Slamming force

Pakozdi, C., Kamath, A., Wang, W., Martin, T., & Bihs, H. Efficient Calculation of Spatial and Temporal Evolution of Hydrodynamic Loads on Offshore Wind Substructures. In *International Conference on Offshore Mechanics and Arctic Engineering, OMAE21*.

(20)

Summary

The need:

Industry and education require high-efficiency approach

The approach:

- High-efficiency model REEF3D::FNPF
- Hydrodynamic coupling (HDC) REEF3D::FNPF REEF3D::CFD
- Arbitrary Lagrangian-Eulerian (ALE) force calculation in REEF3D::FNPF

The results:

- Wave environment + extreme events + force calculation on laptops
- All students from coastal engineering (Kystteknikk) course (TBA4270) can use SWAN and REEF3D on graduation.