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Today’s Aquaculture Structures

• mostly inside fjords 
• hydrodynamic loading: currents 
• protected against large waves 

• mostly Hs,max< 1 m 
• very few places with Hs> 1.5 m 

• traffic light system for salmon lice 
• higher environmental impact on 

closed water systems 

kilde: fiskeridirektoratet



Ambitious Goals 

• increased production 
• larger devices 
• exposed area: Hs= 5 m, Hs= 16 m 
• exposed for large waves and extreme weather 
• outside the traffic light system for salmon lice 
• reduced environmental impact in open ocean 
• challenging: fish escape & fish mortality 

kilde: salmar.no



Project Objectives
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Open ocean structuresTraditional aquaculture in fjords



Challenges
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- Enable the investigation of offshore aquaculture structures in the ocean 
- Complex FSI 
- Including flexible structures 

- Computational Fluid Dynamics  
- Inside into flow pattern around and in the cages 
- Accurate force calculations in severe weather conditions 

- Tasks: 
- Developing suitable mooring model 
- Developing suitable net model 
- Modelling the fluid-structure interaction in CFD solver  

Introduction - Objectives
I Development of a numerical model for simulating OOA structures:

I Two-way coupling.
I Suitable for current and wave studies.
I Based on viscous solver (REEF3D [4]).
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Net dynamics

Fluid-net coupling

Mooring dynamics

Rigid-body FSI solver



REEF3D::CFD
- Solves: 

- Full 3D Navier-Stokes Equations  
- Free Surface: Two-Phase Flow - Water & Air 

- Focus on: 
- Free Surface Flows 
- Wave Hydrodynamics 
- Floating Structures 
- Open Channel Flow 
- Sediment Transport 

- The Code 
- part of the REEF3D hydrodynamic framework 
- C++ (modular & extensible)  
- Parallel Computing / HPC 
- Open-Source: https://github.com/REEF3D  
- Developed at the Department of Civil and 

Environmental Engineering, NTNU Trondheim 
- More info at: www.reef3d.com 
- CFD Online Forum: https://www.cfd-online.com/

Forums/reef3d/  



Modelling the Fluid-Structure Interaction 
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- Direct forcing immersed boundary method 
- Rigid body dynamics described by Euler parameters 
- Weak coupling 
- Implicit boundary conditions enforced with forcing term 



Mooring Models
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Mooring dynamics solver - Conservation laws
I Dynamics of a mooring line neglecting bending stiffness [31]:

g ∂2r
∂t2 = ∂FT f

∂s
+Fe . (10)

r - line coordinates
g - specific weight of the material
FT - magnitude of the tension force
f - unit vector pointing in the direction of tension force
Fe - external forces including gravitation and hydrodynamic effects.

I Numerical solution of (10):
I Needs prescribed initial conditions.
I Restricts time step size.
I Requires relatively large computational effort.
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Mooring dynamics solver - Quasi-static model
I Assuming small line motion in time, (10) simplifies to static equilibrium

∂FT f
∂s

= –Fe . (11)

I Lumped mass method solved for bar vector directions.
I Equally distributed mass, linear elasticity and hydrodynamic transparency.
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Net Model
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- Coupling net and fluid dynamics 
- Structure cannot be resolved in fluid domain 
- Hydrodynamic forces on net using screen force model (alternative to Morison 

equation) 
- Effect of net on fluid trough additional source term in Navier-Stokes equations 
Martin, T. et al., 2020

Figure 2: Illustration of a discrete representation of a physical net (thin lines): black dots
represent knots, thick black lines represent bars. Dashed lines show the distribution of the
screens for the force calculation. For example, the blue areas correspond to the blue knot.

3.3 Hydrodynamic force model

In contrast to previous research on this subject, the proposed model includes the dependency
on all important properties for calculating hydrodynamic forces. Following the screen force
model of Kristiansen and Faltinsen [20], the net area is distributed on adjoint knots as in-
dicated in Fig. 2. Thus, the contributions of up to four panel parts (screens) add up to the
hydrodynamic forces corresponding to a single knot. The surface integral of each screen is
approximated by a second-order accurate quadrature rule using its geometrical centre as the
integration point. On each screen, two force vectors ~FD and ~FL are defined in the normal
and tangential direction to the inflow velocity vector, which can be identified as drag and lift
force directions ~nd and ~nl:

~FD =
⇢

2
CDAu

2
rel
~nd, (11)

~FL =
⇢

2
CLAu

2
rel
~nl, . (12)

Here, A is the area of the screen given as

A =
l1l2

4
· |~b1 ⇥~b2|, (13)

with indices 1 and 2 referring to the two bars spanning the area and ~b the unit bar vectors.
Further, urel represents the magnitude of the relative velocity vector ~urel between the inflow
velocity u1 and the velocity of the panel which is zero in this paper. The two necessary
directions are determined as follows

~nd =
~urel

|~urel|
, (14)

~nl =
(~urel ⇥ ~ns)⇥ ~ns

|(~urel ⇥ ~ns)⇥ ~ns|
, (15)
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screen force model Lagrangian markers within a 
kernel D 

Martin, T. et al., 2020

4.2 Coupling process

A coupling condition can be enforced starting from the Eulerian grid for the fluid and the
Lagrangian points representing the net. Conservation of momentum is assumed for any control
volume enclosing the net. It results in the condition that the energy transfer from the fluid
to the net corresponds to the loss of the fluid momentum due to the disturbance of the net.
This momentum loss can be physically identified as a pressure jump over an infinitesimally
small distance through the net. Looking into the procedure of the projection method from
above, a modification of Eq. (8) can incorporate this change. It leads to the updated Poisson
equation
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with Fi = F (~xe)i being one component of the momentum loss vector due to the presence of
the net at point ~xe of the Eulerian grid. Following the idea of Peskin [30], it can be calculated
from

F (~xe)i =
LX

l=1

D(~xe, ~xl) · f(~xl)i, (22)

where f(~xl)i is the i-th component of the hydrodynamic screen force vector at the Lagrangian
point ~xl and L is the number of Lagrangian points within a defined Kernel D around ~xe. A
modification of Eq. (22) is proposed to have a more flexible choice for the diameter of the
kernel. For this purpose, F (~xe)i is calculated using the inverse distance weighting

F (~xe)i =

P
L

l=1we,l · f(~xl)iP
L

l=1we,l

, (23)

with the dimensionless weights

we,l =
1

|~xe � ~xl|2
. (24)

The chosen distribution of F over a certain volume of the fluid grid is illustrated in 2D in
Fig. 4. Special attention has to be given to the staggered grid arrangement. For example, the
x-component of the force is distributed only on the grid of the x-velocity component.

Finally, the forces at each Lagrangian point ~f(~xl) in the principal direction of the Eulerian
grid are calculated. By comparing to the described screen forces in Eq. (11) and Eq. (12),
they can be expressed as the integrand of the surface integral:

f(~xl)i = FD,i(~xl) + FL,i(~xl) =
⇢

2
u
2
rel

· (CDnd,i + CLnl,i) . (25)
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Froude’s hypothesis arises from Eq. (31) if the assumption is made that half of the pressure
jump is in front and the other half behind the screen,

uind,w = 2uind,s, (32)

i.e. the velocity at the screen is half the velocity between inflow and wake velocity (see Fig. 6).
By inserting this result in Eq. (30) and using the definition of the screen velocity, it yields a
new formula for us:

us = u1 � �p

2⇢u1
. (33)

The pressure jump �p is due to the disturbance forces from Eq. (25) normal to the screen.
Using the fluid velocity at the screen and the inflow velocity for the coe�cient calculation,
the jump can be expressed as

�p =
⇢

2
CD(u1)u2s. (34)

In combination with Eq. (33), the inflow velocity can finally be approximated from the known
screen velocity as

u1 =
CD(u1)

2 ·
⇣p

1 + CD(u1)� 1
⌘ · us. (35)

In the later validation process, Eq. (35) is solved using the Newton-Raphson method with
u1 = us as an initial guess.

Figure 6: Illustration of velocity and pressure distribution in front and behind the net.

4.4 Estimating the velocity reduction through the net

The derivation of the new coupling algorithm in section 4.2 leads to a free parameter  to fulfil
dimensional equality. It arises numerically with the transition from the hydrodynamic surface
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resulting pressure jump at the net

Martin, T. et al., 2020

Figure 2: Illustration of a discrete representation of a physical net (thin lines): black dots
represent knots, thick black lines represent bars. Dashed lines show the distribution of the
screens for the force calculation. For example, the blue areas correspond to the blue knot.

3.3 Hydrodynamic force model

In contrast to previous research on this subject, the proposed model includes the dependency
on all important properties for calculating hydrodynamic forces. Following the screen force
model of Kristiansen and Faltinsen [20], the net area is distributed on adjoint knots as in-
dicated in Fig. 2. Thus, the contributions of up to four panel parts (screens) add up to the
hydrodynamic forces corresponding to a single knot. The surface integral of each screen is
approximated by a second-order accurate quadrature rule using its geometrical centre as the
integration point. On each screen, two force vectors ~FD and ~FL are defined in the normal
and tangential direction to the inflow velocity vector, which can be identified as drag and lift
force directions ~nd and ~nl:

~FD =
⇢

2
CDAu

2
rel
~nd, (11)

~FL =
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2
CLAu

2
rel
~nl, . (12)

Here, A is the area of the screen given as

A =
l1l2

4
· |~b1 ⇥~b2|, (13)

with indices 1 and 2 referring to the two bars spanning the area and ~b the unit bar vectors.
Further, urel represents the magnitude of the relative velocity vector ~urel between the inflow
velocity u1 and the velocity of the panel which is zero in this paper. The two necessary
directions are determined as follows

~nd =
~urel

|~urel|
, (14)

~nl =
(~urel ⇥ ~ns)⇥ ~ns

|(~urel ⇥ ~ns)⇥ ~ns|
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Net Dynamics Model
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• Challenges:  
• Non-linear material laws 
• Large deformations 
• Two distinct stress directions 

• Solution: 
• finite number of mass points 
• connected by non-linear elastic bars pointing in the principal directions of the 

meshes 
• Solving dynamic force equilibrium (Newton’s second law) 
• Implicit method to keep physical connections automatically fulfilled 



Floating Algorithm Validation
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Table 8: Temporal convergence of the numerical mean amplitude (dimensionless) in compar-
ison to the experimental results. For the surge motion, the mean drift is considered.

Motion CFL 0.5 CFL 0.3 CFL 0.1 Extrapol. Exp Error [%]
⌘ 0.0587 0.0571 0.0558 0.0554 0.0513 -7.4
⇣ 0.0621 0.0604 0.0593 0,0591 0.0615 4.1
✓ 0.0426 0.0409 0.0394 0.0387 0.0388 0.3
⇠ 0.0774 0.0683 0.0763 0.0769 0.0715 -7.0

(a) Wave elevation over time at x = 5.5 m. (b) Heave motion over time.

(c) Pitch motion over time. (d) Surge motion over time.

Figure 10: 3DOF motion of the two-dimensional barge over time. Comparison of numerical
and experimental results for �x = 0.01 m and CFL= 0.1.

3.4 Validation of the complete moored floating algorithm

The three degrees of motion of a moored floating barge in waves is investigated. Experiments
were conducted at the wave flume of the Ludwig-Franzius-Institute Hannover, Germany. The
investigated barge Is made of a material with a uniform density of 680 kg/m3. It has a length
of 0.3 m and a height of 0.15 m. The incoming waves have a height of H = 0.03 m and periods
of T = 1.2 s and T = 1.6 s, respectively. Both waves are modelled using the second-order
Stokes theory. Fig. 11 illustrates the two-dimensional numerical domain. The tank is 20 m
long, and the water height is fixed to d = 0.85 m. The centre of the barge is initially located
at (x, z) = (10 m, 0.823 m). Based on the results of the previous simulations, a cell size of
0.012 m and CFL= 0.5 are considered. Two mooring lines are fixed to the barge at still water

19

- d = 0.4m 
- barge density =  500 kg/m3 
- H = 0.04m 
- T = 1.2s



Mooring Models
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- Quasi-static approach = Robustness 



Net Model Validation: Waves
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Validation - Fluid-net coupling in waves
I Fixed net panels with Sn = 0.095 � 0.288 in regular waves [25].
I Wave heights H = 0.045 m � 0.167 m.
I Wave frequencies f = 1.0 Hz � 1.42 Hz.
I 5th-order Stokes waves.

3.5 m

1 m

0.5 m

6.5 m

2.1m
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(a) Drag forces for di↵erent inflow velocities. (b) Velocity profile along the x-axis through the
centre of the sheet. x/L = 0 corresponds to the
x-position of the fixed top of the sheet.

(c) Distribution of the deformed centre line for di↵erent inflow velocities.

Figure 11: Comparison of the numerical and experimental results for a porous sheet in steady
current flow.

6.2 Deformation of a porous sheet in regular waves

In the previously considered experiment of Zhao et al. [37], additional measurements of the
deformation of a porous sheet in regular waves were presented. The sheet is 0.78 m wide,
0.6 m high and consists of squared meshes with dt = 0.0018 m and lt = 0.06 m. The solidity
ratio is approximated as 0.06. The numerical equivalent is modelled using 8 ⇥ 8 elements.
The top is fixed during the experiments and an iron bar with a mass of 82 g in air is attached
to the bottom of the structure. The same wave tank of 30.0 m ⇥ 2.0 m ⇥ 2.0 m with a water
depth of 1 m is used (see Fig. 12). The centre of the sheet is at (x, y, z) = (10, 1.0, 0.6) m. The
same waves as given above are investigated. Additionally, results for waves with wave height
H = 0.15 m and wave periods between 1.1 s and 1.5 s are reported. All waves are numerically
modelled using second-order Stokes theory. The computational domain is discretised using a
uniform grid with �x = 0.04 m.
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Net Model
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Application to Open Ocean Aquaculture structures 
Application - Semi-submersible OOA structure
I Circular structure with D = 1 m adapted from Zhao et al. [45].
I 9 pontoons with columns on top connected with pipes.
I Uniform mass distribution assumed.
I Rigid net system with solidity 0.145.
I Mooring system: 4 linear springs with pretension.
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Application - Semi-submersible OOA structure
I Convergence test for heave and pitch decay ! Dx = 8 mm around structure.
I Regular waves with H = 0.06 m and 0.1 m and T = 1.0 s,1.2 s,1.4 s.
I Jonswap spectra with Hs = 0.1 m and Tp = 0.5 s � 3.5 s.
I Response amplitude operators from power spectra using discrete FFT.
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Application to Open Ocean Aquaculture structures 



Flatøya Aquaculture Site
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WINDMOOR floating offshore wind
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Vegetation in a flow field

20


