Global analyses of OO-Star Wind Floater

Håkon S. Andersen

© Dr.techn.Olav Olsen AS

Outline

- Short Company Introduction
- OO Star Wind Floater
- Global Analysis
- Design Process and Structural Design

OUR HISTORY

- Founded 1962 by Dr.techn. Olav Olsen
- From October 2020 part of Artelia Group
- 110 employees (Olav Olsen)
- Artelia Group 5900 employees worldwide
- Main office at Lysaker
- Regional office in Trondheim
- Structural and marine consulting company
- Participates regularly in research and development projects

BUSINESS AREAS

- Buildings
- Infrastructure
- Offshore Oil & Gas
- Ports and Industry
- Renewable Energi
- Damsafety and Water-resources
- Geotechnical Engineering
- Futurum/CFD/Others
- Electrical Engineering
- HVAC/Water and Sanitation

Revenue distributed per business area

RENEWABLE ENERGY

- Coupled analyses
- Design analyses
- Concept development
- Design of foundation and towers
 - \circ $\,$ Bottom-fixed and floating $\,$
 - Concrete and steel
 - \circ Geotechnics
- Design of mooring and anchors
- Cost and plan
- 3. party verification

OO-Star Wind Floater

- Developed by Dr.techn. Olav Olsen
- IPR's owned by Floating Wind Solutions AS

Selected references Renewable Energy

HYWIND SCOTLAND

OO-STAR WF DEVELOPMENT

WAVEROLLER

INNOVATIVE MOORING SYSTEMS

HYWIND TAMPEN

REDWIN

OFFSHORE WIND GBS

SFT JACKET

Dr.techn. Olav Olsen Capabilities Offshore wind

> Substructures

- Bottom fixed and floating
- Steel and concrete
- Concept development
- Design and analysis (ShellDesign)
- Geotechnics

> Mooring and anchors

- System configuration
- System design
- Geotechnics

> Installation

- Method development
- Installation concepts

> Fully coupled simulations:

- SIMA
- 3DFloat
- OrcaFlex
- (Deeplines, Ashes, Fast)

Cost models

- Fabrication and Installation
 - Substructure
 - Mooring
 - Anchors

> Third party verification

OO-STAR WIND FLOATER

OLAV OLSEN – OFFSHORE WIND

THE OO-STAR WIND FLOATER HISTORY

- > Few realistic WTG floaters before 2010
- > HiPRWind (2010) questions to scalability and fatigue
- > OO-Star Wind Floater developed 2010/11, presented at ONS2012
- > Preferred concept (steel) for EU project Floatgen Acciona part 3 MW WTG
- > NFR project 2013-2014: Designed for 6MW, WD 100 m, North Sea
- > LIFES50+ 2015-2018: Up-scaling to 10 MW, WD 70-130 m, Hs=7.0 -15.6 m
- > Flagship 2020->: Full-scale demonstrator of the concept

BENEFITS OF CONCRETE

- Robust
 - Fatigue properties
 - Impact loads
 - Design changes
- Good scaling with increased size and loads
- No corrosion for main load bearing structure
- Long design life
- Virtually maintenance-free

POTENTIAL AREAS AND MARKET

Figure 1.1.1.Sea depth around Europe (DNV-GL, 2014)

OO-STAR WF CAN ACCOMMODATE LARGE TURBINESFAVOURABLE SCALING DECREASES COST PR MW

DLAV OLSEN

Trendline indicates 30% reduced floater cost per MW from 8 to 16 from scaling effects alone

MOORING SYSTEM

- Mooring system is site specific, but several options have been used in previous studies.
 - 3-line catenary system
 - 3-line semi taught system (Chain, polyester and clump weight)
 - 6-line system
- > Mooring attachment at top of corner columns
 - Passive connection no winch

14

240 dea

COST REDUCTION THROUGH INDUSTRIALISATION

GLOBAL ANALYSIS

COUPLED ANALYSIS - SIMULATION OVERVIEW

- > Time domain simulations
- > 1 to 3 hours simulation length
- > 10+ seeds per extreme case
- > Irregular sea states with linear waves
- > Turbulent wind fields

COUPLED ANALYSIS – TYPICAL ANALYSIS

CALIBRATION

- > Model Tests:
 - RCN project
 - Lifes50+
- > Reference literature:
 - DNV-RP-C205 Environmental Conditions and Environmental Loads
 - DNV-OS-E301 Position Mooring
- > Analyses:
 - CFD
 - Second Order Potential Theory

https://www.youtube.com/watch?v=l3gQeD_rVe8

CALIBRATION EXAMPLE - CFD

LOAD CASES (DNV-ST-0437)

Table 4-3 Design load cases

Design Situation	<i>DLC</i>	Wind Condition	Marine Condition					Type of Analysis														
			Waves NSS $H_{s} = E[H_{s} V_{hub}]$	Wind and wave directionality COD, UNI	Sea Currents NCM	Water Level MSL	Other Conditions: For extrapolation of extreme loads (offshore – only RNA)	C Onshore	ė	Partial safety				Wind Condition	Marine Condition					Type of Analysis		
									Offshor	factor		Design Situation	DLC		Waves	Wind and wave directionality	Sea Currents	Water Level	Other Conditions:	Onshore	Offshore	Partial safety factor
		NTM V _{in} < V _{hub} < V _{out}							U	N (1.25)												
	1.2	NTM V _{in} < V _{hub} < V _{out}	NSS Joint prob.	MIS, MUL	No Currents	NWLR or ≥ MSL		F/U	F/U	F/N		6) Parked (standing still or idling)										
	1.3	ETM Vin < Vhub< Vout	NSS $H_{s} = E[H_{s} V_{hub}]$	COD, UNI	NCM	MSL		U	U	N			6.1	EWM V _{hub} = V _{ref}	$ESS H_{s} = H_{s,50}$	MIS, MUL	ECM $U = U_{50}$	EWLR	Yaw misalignment of ±8 deg Possible yaw slippage	U	U	N
	1.4	ECD $V_{hub} = V_r - 2 \text{ m/s}$ $s, V_r, V_r + 2 \text{ m/s}$	NSS $H_{\rm s} = E[H_{\rm s} V_{\rm hub}]$	MIS, wind direction change	NCM	MSL		U	U	N			6.2	EWM $V_{hub} = V_{ref}$	$ESS H_{s} = H_{s,50}$ $ESS H_{s} = H_{s,1}$	MIS, MUL	ECM $U = U_{50}$ ECM $U = U_1$	EWLR	Loss of electrical network Yaw misalignment of ±180° Extreme yaw misalignment Yaw misalignment of ±20 deg	U	U	A
	1.5	EWS V _{in} < V _{hub} < V _{out}	NSS $H_{\rm s} = E[H_{\rm s} V_{\rm hub}]$	COD, UNI	NCM	MSL		U	U	N			6.3	EWM								N
	1.6	NTM Vin < V _{hub} < V _{out}	SSS H _s = H _{s,SSS}	COD, UNI	NCM	NWLR		-	U	N	1			$V_{\text{hub}} = V_1$								IN
	1.7	NTM V _{in} < V _{hub} < V _{out}	NSS Joint prob. distribution of H _S , T _p , V _{hub}	MIS, MUL	No Currents	NWLR or ≥ MSL	Ice formation	F/U	F/U	F/N												

IMPORTANT LOAD EFFECTS

> Environmental

- Wave loads
 - First order
 - Second order
 - Slamming
- Current loads
- Aerodynamic loads
- > Accidental:
 - Ship Impact

DESIGN PROCESS AND STRUCTURAL DESIGN

MAIN PROCESS – CONCEPTUAL STUDIES

STRUCTURAL ANALYSES – OVERVIEW

LOCAL MODELS

- > Used to verify chosen geometry and find final reinforcement intensity in the substructure
- > Loads are based on the fully coupled simulations
 - Simultaneously acting beam section forces from fully coupled analysis combined with hydrodynamic and hydrostatic pressure

OTHER MODELS

> WASIM model:

- Used for validation of hydrodynamics
- Air gap (idling)
- (Validation of design forces in WADAM and SIMA)
- > WADAM -> SIMA -> WASIM
 - Supported by the software
 - Currently being tested
 - Expected to be rather complicated and computationally challenging.

CHALLENGES

> A significant amount of manual work needed to calibrate models

- > Defining consistent and correct design forces for complex areas
- > Representative hydrodynamic pressure in design models

THANKS FOR YOUR ATTENTION

FOR FURTHER INFORMATION PLEASE VISIT OUR WEBSITE!

www.olavolsen.no

Disclaimer & copyright

Disclaimer

Dr.techn. Olav Olsen provides no warranty, expressed or implied, as to the accuracy, reliability or completeness of the presentation. and neither Dr.techn. Olav Olsen nor any of its directors or employees will have any liability to you or any other persons resulting from your use.

Copyright

Copyright of all published material including photographs, drawings and images in this presentation remains vested in Dr.techn. Olav Olsen and third party contributors as appropriate. Accordingly, neither the whole nor any part of this document shall be reproduced in any form nor used in any manner without prior permission and applicable acknowledgements. No trademark, copyright or other notice shall be altered or removed from any reproduction.

Backup Slides

PROPOSED PROCESS FOR DETAILED DESIGN

FLOATING OFFSHORE WIND – OUR EXPERIENCE

Access and Guide Tubes

ACCESS & GUIDE TUBES

GANGWAY WORKING AREA

- Motion compensation in 4 degrees of freedom
 - Luffing, telescoping, slewing and heaving
- Vertically heave compensation on hinge point
 - Eliminates angle on gangway during operation
- Elevator inside tower syncs the heave compensation of the hinge point

FLAGSHIP Project

FLoAtinG offSHore wInd oPtimization for commercialization

This project has received funding from the European Union's Horizon 2020 Research And Innovation programme under Grant Agreement N^o 952979 Håkon Andersen Dr.techn.Olav Olsen AS Email <u>hsa@olavolsen.no</u>

What is FLAGSHIP?

Main objective: To reduce the Levelized Cost of Energy (LCOE) for floating offshore wind to the range 40-60 €/MWh by 2030.

Project is based on a Consortium created to participate in the European programme Horizon 2020, with a full-scale turbine >10 MW in site and environmental conditions comparable to the future potential projects.

Awarded with a **25 MM €** Grant from the European Commission (EC).

Consortium

International consortium lead by **Iberdrola** and including companies and institutions from 5 different countries:

- Spain
- Norway
- Denmark
- Germany
- France

Multi-disciplinary profile of the partners to offer an appropriate balance.

Project overview

- FLAGSHIP will develop and fabricate the first 10+ MW Floating Offshore Wind Turbine (FOWT).
- Will be assembled on a floating semisubmersible concrete structure in the Norwegian North Sea.
- The starting point for large-scale
 500MW+ commercial floating
 offshore wind farms of the future
- Project Schedule 2020-2024

Key Technical Areas of the project

Demonstrator Unit in brief

Floater – Concrete/Steel hull (one off)

- Designed by Olav Olsen
- Engineering by Olav Olsen and Aker Solutions
- Procurement, Fabrication and Installation by Aker Solutions
- Will be fabricated in a dry dock on the west-coast of Norway
- Mooring System Catenary chain system (200 m WD)
 - Designed by Olav Olsen
 - Procurement and Installation by Aker Solutions
- Cable IAC Flexible cable to Zefyros is Base Case
 - Designed and supply by Unitech
- The FLAGSHIP demonstrator will be installed at the Marine Energy Test Centre (MET) in the Norwegian North Sea.

